Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aims/hypothesis To assess the associations between glucose metabolism status and a range of continuous measures of glycaemia with corneal nerve fibre measures, as assessed using corneal confocal microscopy. Methods We used population-based observational cross-sectional data from the Maastricht Study of N=3471 participants (mean age 59.4 years, 48.4% men, 14.7% with prediabetes, 21.0% with type 2 diabetes) to study the associations, after adjustment for demographic, cardiovascular risk and lifestyle factors, between glucose metabolism status (prediabetes and type 2 diabetes vs normal glucose metabolism) plus measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, skin autofluorescence [SAF] and duration of diabetes) and composite Z-scores of corneal nerve fibre measures or individual corneal nerve fibre measures (corneal nerve bifurcation density, corneal nerve density, corneal nerve length and fractal dimension). We used linear regression analysis, and, for glucose metabolism status, performed a linear trend analysis. Results After full adjustment, a more adverse glucose metabolism status was associated with a lower composite Z-score for corneal nerve fibre measures (β coefficients [95% CI], prediabetes vs normal glucose metabolism −0.08 [−0.17, 0.03], type 2 diabetes vs normal glucose metabolism −0.14 [−0.25, −0.04]; linear trend analysis showed a p value of 0.001), and higher levels of measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, SAF and duration of diabetes) were all significantly associated with a lower composite Z-score for corneal nerve fibre measures (per SD: −0.09 [−0.13, −0.05], −0.07 [−0.11, −0.03], −0.08 [−0.11, −0.04], −0.05 [−0.08, −0.01], −0.09 [−0.17, −0.001], respectively). In general, directionally similar associations were observed for individual corneal nerve fibre measures. Conclusions/interpretation To our knowledge, this is the first population-based study to show that a more adverse glucose metabolism status and higher levels of glycaemic measures were all linearly associated with corneal neurodegeneration after adjustment for an extensive set of potential confounders. Our results indicate that glycaemia-associated corneal neurodegeneration is a continuous process that starts before the onset of type 2 diabetes. Further research is needed to investigate whether early reduction of hyperglycaemia can prevent corneal neurodegeneration. Graphical Abstract
Aims/hypothesis To assess the associations between glucose metabolism status and a range of continuous measures of glycaemia with corneal nerve fibre measures, as assessed using corneal confocal microscopy. Methods We used population-based observational cross-sectional data from the Maastricht Study of N=3471 participants (mean age 59.4 years, 48.4% men, 14.7% with prediabetes, 21.0% with type 2 diabetes) to study the associations, after adjustment for demographic, cardiovascular risk and lifestyle factors, between glucose metabolism status (prediabetes and type 2 diabetes vs normal glucose metabolism) plus measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, skin autofluorescence [SAF] and duration of diabetes) and composite Z-scores of corneal nerve fibre measures or individual corneal nerve fibre measures (corneal nerve bifurcation density, corneal nerve density, corneal nerve length and fractal dimension). We used linear regression analysis, and, for glucose metabolism status, performed a linear trend analysis. Results After full adjustment, a more adverse glucose metabolism status was associated with a lower composite Z-score for corneal nerve fibre measures (β coefficients [95% CI], prediabetes vs normal glucose metabolism −0.08 [−0.17, 0.03], type 2 diabetes vs normal glucose metabolism −0.14 [−0.25, −0.04]; linear trend analysis showed a p value of 0.001), and higher levels of measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, SAF and duration of diabetes) were all significantly associated with a lower composite Z-score for corneal nerve fibre measures (per SD: −0.09 [−0.13, −0.05], −0.07 [−0.11, −0.03], −0.08 [−0.11, −0.04], −0.05 [−0.08, −0.01], −0.09 [−0.17, −0.001], respectively). In general, directionally similar associations were observed for individual corneal nerve fibre measures. Conclusions/interpretation To our knowledge, this is the first population-based study to show that a more adverse glucose metabolism status and higher levels of glycaemic measures were all linearly associated with corneal neurodegeneration after adjustment for an extensive set of potential confounders. Our results indicate that glycaemia-associated corneal neurodegeneration is a continuous process that starts before the onset of type 2 diabetes. Further research is needed to investigate whether early reduction of hyperglycaemia can prevent corneal neurodegeneration. Graphical Abstract
Background: Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. Methods: In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. Results: Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. Conclusion: Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.