It is likely that superficial corneal epithelial cells (SCECs) of the dromedary camels have a significant role in their survival at arid and semiarid regions. To the best of our knowledge, SCECs of camels' eyes have not been characterized previously using scanning electron microscopy (SEM), combined with morphometric analysis. Therefore, in the current study, we aim to describe the shape, topographical distribution, and density of SCECs associated with morphometric analysis using SEM. Twelve healthy adult camels' corneas were obtained immediately after slaughter. Each cornea has been divided into nine parts: central (C), middle dorsal (MD), middle ventral (MV), middle nasal (MN), middle temporal (MT), peripheral dorsal (PD), peripheral ventral (PV), peripheral nasal (PN), and peripheral temporal (PT). SCECs were distinguished and characterized into light, medium, and dark mosaics. The polygonal cells have been externally covered with microplicae that were more numerous above the light cells. The topographic distribution of light, medium, and dark cells revealed a well‐defined concentration of light cells in excess of other cells in all parts as follows: PV (92.5%), PN (78.5%), MN (78%), MT (74.7%), PD (73.8%), PT (70.7%), MV (68.7%), MD (66.3%), and C (19.3%). The PV part recorded the highest density of light cells, while the C portion showed the lowest density for the same cells. We concluded that the light cells extensively predominate in all parts of the camels' cornea except the C part, indicating an adaptive modification to the harsh environment. Additionally, the PV and PN parts represent the permanent and endogenous source as well as a proliferative reserve for SCECs in dromedary camel.