SummaryThe left ventricular hypertrophy (LVH) occurs in response to the hemodynamic overload in some physiological and pathological conditions. However, it has not been completely elucidated whether the primary stimulation for the hypertrophy is the mechanical stretching of the heart, neurohumoral factors, or even the interaction of both. These factors are translated inside the cell as biochemical alterations that lead to the activation of second (cytosolic) and third (nuclear) messengers that will act in the cell nucleus, regulating transcription, and will finally determine the genic expression that induces LVH. The LVH is characterized by structural alterations due to the increase in the cardiomyocyte dimensions, the proliferation of the interstitial connective tissue and the rarefaction of the coronary microcirculation. Recently, nitric oxide (• NO) has appeared as an important regulator of cardiac remodeling, specifically recognized as an anti-hypertrophic mediator. Some studies have demonstrated the cellular targets, the anti-hypertrophic signaling pathways and the functional role of• NO. Thus, the LVH seems to develop as a result of the loss of the balance between the pro and the antihypertrophic signaling pathways. This new knowledge about the pro and anti-hypertrophic signaling pathways will allow the development of new strategies in the treatment of pathological LVH.