PurposeThe present article's primary purpose is the topic modeling of the global coronavirus publications in the last 50 years.Design/methodology/approachThe present study is applied research that has been conducted using text mining. The statistical population is the coronavirus publications that have been collected from the Web of Science Core Collection (1970–2020). The main keywords were extracted from the Medical Subject Heading browser to design the search strategy. Latent Dirichlet allocation and Python programming language were applied to analyze the data and implement the text mining algorithms of topic modeling.FindingsThe findings indicated that the SARS, science, protein, MERS, veterinary, cell, human, RNA, medicine and virology are the most important keywords in the global coronavirus publications. Also, eight important topics were identified in the global coronavirus publications by implementing the topic modeling algorithm. The highest number of publications were respectively on the following topics: “structure and proteomics,” “Cell signaling and immune response,” “clinical presentation and detection,” “Gene sequence and genomics,” “Diagnosis tests,” “vaccine and immune response and outbreak,” “Epidemiology and Transmission” and “gastrointestinal tissue.”Originality/valueThe originality of this article can be considered in three ways. First, text mining and Latent Dirichlet allocation were applied to analyzing coronavirus literature for the first time. Second, coronavirus is mentioned as a hot topic of research. Finally, in addition to the retrospective approaches to 50 years of data collection and analysis, the results can be exploited with prospective approaches to strategic planning and macro-policymaking.