Unilateral spastic cerebral palsy (USCP) is caused by damage to the developing brain and affects motor function, mainly lateralized to one side of the body. Children with USCP have difficulties grasping objects, which can affect their ability to perform daily activities. Although cerebral palsy is typically classified according to motor function, sensory abnormalities are often present as well and may contribute to motor impairments, including grasping. In this review, we show that the integrity and connectivity pattern of the corticospinal tract (CST) is related to execution and anticipatory control of grasping. However, as this may not explain all the variance of impairments in grasping function, we also describe the potential roles of sensory and sensorimotor integration deficits that contribute to grasp impairments. We highlight studies measuring fingertip forces during object manipulation tasks, as this approach allows for the dissection of the close association of sensory and motor function and can detect the discriminant use of sensory information during a complex, functional task (i.e., grasping). In addition, we discuss the importance of examining the interactions of the sensory and motor systems together, rather than in isolation. Finally, we suggest future directions for research to understand the underlying mechanisms of grasp impairments.