We show that the state-of-the-art Transformer MT model is not biased towards monotonic reordering (unlike previous recurrent neural network models), but that nevertheless, longdistance dependencies remain a challenge for the model. Since most dependencies are shortdistance, common evaluation metrics will be little influenced by how well systems perform on them. We therefore propose an automatic approach for extracting challenge sets replete with long-distance dependencies, and argue that evaluation using this methodology provides a complementary perspective on system performance. To support our claim, we compile challenge sets for English-German and German-English, which are much larger than any previously released challenge set for MT. The extracted sets are large enough to allow reliable automatic evaluation, which makes the proposed approach a scalable and practical solution for evaluating MT performance on the long-tail of syntactic phenomena. 1