The emergence of the metasurface has provided a versatile platform for the manipulation of light at the nanoscale. Recent research in metasurfaces has explored a plethora of dynamic control and switching of multifunctionalities, paving the way for innovative applications in fields such as imaging, sensing, and communication. However, current dynamic multifunctional metasurfaces face challenges in terms of functional scalability and selective activation. In this work, we introduce and experimentally demonstrate a strategy that utilizes multiple plane waves to create arbitrary periodic patterns on the metasurface, thus enabling the dynamic and arbitrary spatial-selective activation of its embedded multiplexed functionalities. Furthermore, our strategy facilitates dynamic light control through mechanical translation, as demonstrated by a high-speed, dynamically switchable beam deflection scenario. Our method effectively overcomes the limitations associated with traditional spatially multiplexing techniques, offering greater flexibility and selectivity for dynamic control in multifunctional metasurfaces.