In this experimental study, panel flutter induced by an impinging oblique shockwave is investigated at a freestream Mach number of 2, using the combination of planar particle image velocimetry (PIV) and stereographic digital image correlation (DIC) to obtain simultaneous full-field structural displacement and flow velocity measurements. High-speed cameras are employed to obtain a time-resolved description of the panel motion and the shockwave-boundary layer interaction (SWBLI). In order to prevent interference between the PIV and DIC systems, an optical isolation is implemented using fluorescent paint, dedicated light sources, and camera lens filters. The effect of the panel motion on the SWBLI behavior is assessed, by comparing it with the SWBLI on a rigid wall. The results show that panel oscillations occur with a maximum amplitude of ten times the panel thickness. The dominant frequencies observed in the panel oscillation (424 Hz and 1354 Hz) match the main spectral content of the reflected shockwave position. A further POD analysis of the panel displacement spatial distribution shows that these two frequency contributions are well captured by the first two POD modes, which correspond, respectively, to a first and a third bending mode shape and account for 92% of the total oscillation energy. The fluid-structure coupling is studied by identifying, in the flow, the regions of maximum correlation between the panel displacement and the flow velocity fluctuations. The results obtained prove that the inviscid flow region upstream of the SWBLI is perfectly in phase with the panel oscillation, while the downstream region has a delay of one quarter of the flutter cycle.