Crocodylomorphs have colonized various environments from fully terrestrial to fully aquatic, making it an important clade among archosaurs. A remarkable example of the rich past diversity of Crocodylomorpha Hay, 1930 is the marine colonization undergone by several crocodylomorph lineages, particularly Thalattosuchia Fraas, 1901 during the Early Jurassic–Early Cretaceous, and Dyrosauridae de Stefano, 1903 during the Late Cretaceous–Early Eocene. Thalattosuchia represents the most impressive and singular marine radiation among Crocodylomorpha, occupying various ecological niches, before enigmatically disappearing in the Cretaceous. Dyrosauridae, on the other hand, is known for surviving the end‐Cretaceous mass extinction in abundance but subsequently vanished. The evolutionary path undertaken by crocodylomorphs into the aquatic environments and the reasons for their disappearance outside marine extinction events during the Mesozoic remains a mystery. Despite a well‐preserved fossil record, attention has primarily centered on craniodental adaptations, overlooking the swimming‐related adaptations recorded in the postcranial skeleton. This research primarily involves a comprehensive examination of the pectoral girdle of the most representative members of Thalattosuchia and Dyrosauridae, highlighting their evolutionary trajectories over time. Additionally, this work aims to test the phylogenetic signal residing in the postcranial anatomy of Crocodylomorpha. As such, the most recent and complete Crocodylomorpha phylogenetic dataset has been repurposed: 42 new postcranial characters have been added and several others have been revised to address our phylogenetic question. We stress that postcranial anatomy constitutes an important tool supply to better understand the relations of extinct crocodyliforms, but also offers insights on their development, ecology, and biomechanics.