2005
DOI: 10.1007/11557654_121
|View full text |Cite
|
Sign up to set email alerts
|

Correction of Building Height Effect Using LIDAR and GPS

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 3 publications
0
1
0
Order By: Relevance
“…Furthermore, passive remote sensors, such as HS, are sensitive to atmospheric conditions and illumination, whereas lidar as an active sensor is less sensitive to these factors. This property of lidar enables, e.g., a physical correction of shadow and illumination purposes when combined with HS data [20][21][22][23][24][25] and intensity measurement for urban land cover mapping in shaded areas [26]. Regardless of the spatial and spectral resolution of airborne-based HS sensors, urban environments are characterized by spectral ambiguity and reduced spectral value under the shadow caused by topography changes, buildings, and trees, which can be overcome by adding lidar data as presented by [27].…”
Section: Introductionmentioning
confidence: 99%
“…Furthermore, passive remote sensors, such as HS, are sensitive to atmospheric conditions and illumination, whereas lidar as an active sensor is less sensitive to these factors. This property of lidar enables, e.g., a physical correction of shadow and illumination purposes when combined with HS data [20][21][22][23][24][25] and intensity measurement for urban land cover mapping in shaded areas [26]. Regardless of the spatial and spectral resolution of airborne-based HS sensors, urban environments are characterized by spectral ambiguity and reduced spectral value under the shadow caused by topography changes, buildings, and trees, which can be overcome by adding lidar data as presented by [27].…”
Section: Introductionmentioning
confidence: 99%