Warfarin dosing relies on accurate measurements of international normalized ratio (INR), which is calculated from the prothrombin time (PT), International Sensitivity Index international sensitivity index (ISI) of the thromboplastin, and the geometric mean of normal PT (MNPT). However, ISI assignments of certain reagent/instrument combinations are frequently unavailable, especially when the reagent and instrument are not from the same manufacturer. The effort to be in compliance with widely endorsed Clinical and Laboratory Standards Institute (CLSI) guidelines by locally verifying or assigning an ISI to an unsupported reagent/instrument combination is further hindered by the lack of US Food and Drug Administration (FDA)-approved certified plasmas designated for a particular reagent/instrument combination. The objectives of the study include development of a process to verify/assign ISI and MNPT of a single thromboplastin reagent from one manufacturer across multiple instruments including several from another manufacturer and across several campuses of a single institution, the Mayo Clinic. In this study, RecombiPlasTin 2G (R2G), was evaluated on the ACL TOP 700 (IL), STA-R Evolution, STA Compact, and STA Satellite. Random normal donor samples (n = 25) were used to verify/assign MNPT. A subset of the normal donors (n = 8) and 13 warfarin pools (INR range: 1.3-3.9), created from stable warfarin patient plasma, were used for ISI verification/assignment. The manufacturer's assigned ISI was first verified on the ACL TOP 700 (reference method), then assigned on three unsupported instruments using orthogonal regression analysis. The MNPT and manufacturer assigned ISI (11.0, 0.95) were verified on the ACL TOP 700 and subsequently assigned on the STA-R Evolution (11.6, 1.04); STA Compact (11.5, 1.02); and STA Satellite (10.9, 0.99). Linear correlations of the INR results from all the four instruments demonstrated an r2 > 0.99. This process provides a reproducible approach to assigning ISIs on unsupported reagent/instrument combinations. Our data also confirm that ISIs of the same PT reagent differ significantly on different instruments, thus confirming the requirement for evaluations and validation of ISIs for different reagent/instrument combinations.