Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction: Congenital heart disease (CHD) is a common heart defect that can be present in small and large animals at birth. Student understanding of normal and abnormal cardiac anatomy is imperative for proper diagnosis and management of CHD. Objectives were to create and use three-dimensional (3D) heart models during a workshop to understand veterinary student perception of 3D models for CHD education. We hypothesized that 3D models would enhance student understanding of CHD, and students would prefer 3D models during cardiac education. Materials and Methods: Computed tomography angiography datasets from canine patent ductus arteriosus were used to create 3D models. Segmentation and computer-aided design were performed. Virtual overlays of 3D models were displayed onto two-dimensional (2D) thoracic radiographs. Stereolithography files were fabricated by a 3D printer. Students participated in a CHD workshop consisting of 2D and 3D teaching stations. Self-assessment surveys before and after the workshop were completed. Results: Twenty-two veterinary students attended the workshop. The 3D-printed models were found to be the most helpful teaching modality based on students’ perception. The 3D-printed model (P < 0.0001) and the 3D digital model (P < 0.0001) were perceived to be significantly more helpful than the 2D radiograph station. All students strongly agreed (15/22) or agreed (7/22) that virtual models overlayed onto 2D radiographs enhanced their spatial recognition of anatomic structures. All students strongly agreed (17/22) and agreed (5/22) that the CHD workshop was a valuable learning opportunity. Conclusion: Creation of virtual and fabricated 3D heart models is feasible. Three-dimensional models may be helpful when understanding spatial recognition of cardiovascular anatomy on thoracic radiographs. We advocate using 3D heart models during CHD education.
Introduction: Congenital heart disease (CHD) is a common heart defect that can be present in small and large animals at birth. Student understanding of normal and abnormal cardiac anatomy is imperative for proper diagnosis and management of CHD. Objectives were to create and use three-dimensional (3D) heart models during a workshop to understand veterinary student perception of 3D models for CHD education. We hypothesized that 3D models would enhance student understanding of CHD, and students would prefer 3D models during cardiac education. Materials and Methods: Computed tomography angiography datasets from canine patent ductus arteriosus were used to create 3D models. Segmentation and computer-aided design were performed. Virtual overlays of 3D models were displayed onto two-dimensional (2D) thoracic radiographs. Stereolithography files were fabricated by a 3D printer. Students participated in a CHD workshop consisting of 2D and 3D teaching stations. Self-assessment surveys before and after the workshop were completed. Results: Twenty-two veterinary students attended the workshop. The 3D-printed models were found to be the most helpful teaching modality based on students’ perception. The 3D-printed model (P < 0.0001) and the 3D digital model (P < 0.0001) were perceived to be significantly more helpful than the 2D radiograph station. All students strongly agreed (15/22) or agreed (7/22) that virtual models overlayed onto 2D radiographs enhanced their spatial recognition of anatomic structures. All students strongly agreed (17/22) and agreed (5/22) that the CHD workshop was a valuable learning opportunity. Conclusion: Creation of virtual and fabricated 3D heart models is feasible. Three-dimensional models may be helpful when understanding spatial recognition of cardiovascular anatomy on thoracic radiographs. We advocate using 3D heart models during CHD education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.