This paper studies the critical issue of thin-walled beams with laterally fixed ends. The method for defining the formulae of twist moment for the beams subjected to combined loads was elucidated. Based on this, the governing differential equations of the beam were developed. The procedure for determining the critical state of the beam by the energy method was presented. With this procedure, the critical state of the beam concerned under three types of loadings such as axial force [Formula: see text], bending moment [Formula: see text] and distributed load [Formula: see text] (or concentrated load [Formula: see text]) was examined deliberately. The outcomes were presented in explicit closed-form, which can be illustrated in 2D and 3D graphs. Also, the analytical solution obtained was in agreement with the numerical one obtained by the commercial software NX Nastran. Furthermore, the analytical solutions were applied straightforwardly to explore the stability and design optimization of the tooth-blade for the new frame-type saw machine under an eccentric load. The result can also be promisingly used to study problems of thin-walled beams with laterally fixed ends subjected to other types of loads.