Abstract.In this paper we analyze the semantics of a higher-order functional language with concurrent threads, monadic IO and synchronizing variables as in Concurrent Haskell. To assure declarativeness of concurrent programming we extend the language by implicit, monadic, and concurrent futures. As semantic model we introduce and analyze the process calculus CHF, which represents a typed core language of Concurrent Haskell extended by concurrent futures. Evaluation in CHF is defined by a small-step reduction relation. Using contextual equivalence based on may-and should-convergence as program equivalence, we show that various transformations preserve program equivalence. We establish a context lemma easing those correctness proofs. An important result is that call-by-need and call-by-name evaluation are equivalent in CHF, since they induce the same program equivalence. Finally we show that the monad laws hold in CHF under mild restrictions on Haskell's seq-operator, which for instance justifies the use of the do-notation.