We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a de tection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.
10Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip. Striking advances in observational cosmology over the past two decades have provided us with a consistent account of the form and composition of the universe. Now that key cosmological parameters have been determined to within a few percent, we anticipate a generation of experiments that move beyond adding precision to measurements of what the universe is made of, but instead help us learn why the universe has the form we observe. In particular, during the coming decade, observational cosmology will probe the detailed dynamics of the universe in the earliest instants after the Big Bang, and start to yield clues about the physical laws that governed that epoch. Future experiments will plausibly reveal the dynamics responsible both for the large-scale homogeneity and flatness of the universe, and for the primordial seeds of small-scale inhomogeneities, including our own galaxy.The leading theoretical paradigm for the initial moments of the Big Bang is inflation [1][2][3][4][5][6], a period of rapid accelerated expansion. Inflation sets the initial conditions for conventional Big Bang cosmology by driving the universe towards a homogeneous and spatially flat configuration, which accurately describes the average state of the universe. At the same time, quantum fluctuations in both matter fields and spacetime produce minute inhomogeneities [7][8][9][10][11][12]. The seeds that grow into the galaxies, clusters of galaxies and the temperature anisotropies in the cosmic microwave background (CMB) are thus planted during the first moments of the universe's existence. By measuring the anisotropies in the microwave background and the large scale distribution of galaxies in the sky, we can infer the spectrum of the primordial perturbations laid down during inflation, and thus probe the underlying physics of this era. Any successful inflationary model will deliver a universe that is, on average, spatially flat and homogeneous -and one homogeneous universe looks very much like ano...