Control over the doping density in
copper sulfide nanocrystals
is of great importance and determines its use in optoelectronic applications
such as NIR optical switches and photovoltaic devices. Here, we demonstrate
that we can reversibly control the hole carrier density (varying from
>1022 cm–3 to intrinsic) in copper
sulfide
nanocrystals by electrochemical methods. We can control the type of
charge injection, i.e., capacitive charging or ion intercalation,
via the choice of the charge compensating cation (e.g., ammonium salts
vs Li+). Further, the type of intercalating ion determines
whether the charge injection is fully reversible (for Li+) or leads to permanent changes in doping density (for Cu+). Using fully reversible lithium intercalation allows us to switch
between thin films of covellite CuS NCs (Eg = 2.0 eV, hole density 1022 cm–3, strong
localized surface plasmon resonance) and low-chalcocite CuLiS NCs
(Eg = 1.2 eV, intrinsic, no localized
surface plasmon resonance), and back. Electrochemical Cu+ ion intercalation leads to a permanent phase transition to intrinsic
low-chalcocite Cu2S nanocrystals that display air stable
fluorescence, centered around 1050 nm (fwhm ∼145 meV, PLQY
ca. 1.8%), which is the first observation of narrow near-infrared
fluorescence for copper sulfide nanocrystals. The dynamic control
over the hole doping density and fluorescence of copper sulfide nanocrystals
presented in this work and the ability to switch between plasmonic
and fluorescent semiconductor nanocrystals might lead to their successful
implementation into photovoltaic devices, NIR optical switches and
smart windows.