The texture and the bulk stored energy along the thickness direction were extremely inhomogeneous in the clock-rolled tantalum sheets with 70% reduction. Therefore, the effects of different annealing temperatures on the microstructure and texture distribution of tantalum plates through the thickness were investigated by X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The results showed that the occurrence of strong {111} recrystallization texture in the center layer can be attributed to the subgrains nucleation mechanism when annealed at the low temperature. Many subgrains with {111} orientation appeared in the center layer, due to its high stored energy and preferential nucleation sites of the {111} deformed matrix, and rapidly grew into the effective nucleus, resulting in the large {111} grain size and strong {111} texture after complete recrystallization. Contrarily, at the high temperature, high-angle grain boundaries had sufficient driving force to generate migration, due to the lack of recovery, and the growth time of recrystallized nucleus was much shorter, contributing to relatively uniform recrystallization microstructure and texture distribution along the thickness.