Purpose
One of the most common malignancies peculiar to female health with few symptoms, low response to therapy, difficult diagnosis, frequent relapse, and high mortality, is ovarian cancer. Thus, our experiment, using Human amniotic fluid mesenchymal stem cells (hAFMSCs) as a therapeutic tool, aims to find an efficient treatment approach for patients suffering from SKOV3 ovarian cancer.
Material & Methods
In this study, we obtained 5 ml amniotic fluid from 16–20 week pregnant women who underwent amniocentesis for routine prenatal diagnosis by karyotyping in Al‐Zahra Hospital of Tabriz University of Medical Sciences, Iran. Using trans wells in 24 wells plate, hAFMSCs were isolated from all samples, co‐cultured with SKOV3 ovarian cancer cell line, and characterized via flow cytometry and RT‐PCR. Human skin fibroblast cells (HSFCs) were isolated and used as a negative control. SKOV3 and HSFCs' viability after 5 days was evaluated by MTT assay. Cell cycle and apoptotic genes were analyzed by real‐time PCR.
Results
We successfully isolated and characterized hAFMSCs through it positivity for CD44 and CD90 specific mesenchymal stem cell markers and negativity for CD31 and CD45. Oct4 and NANOG were evaluated by RT‐PCR as pluripotency markers, and visualized on 2% gel electrophoresis. We established hAFMS cell lines after 5 days of co‐culturing the SKOV3 cells, viability was decreased; however, HSFCs did not show toxicity by MTT assay. The genes indicated upregulation and high expression by a real‐time PCR.
Conclusions
Our findings showed that hAFMSCs have natural tumor tropism, and can release soluble factors in a cell culture, which cause an efficient anticancer effect. Thus, we can use hAFMSCs for complete anticancer therapy on SKOV3 cell line at cell culture condition and possibly in vivo in the near future.