The production and storage of major hazard installations (MHIs) bring potential risks to chemical industrial park (CIP). In the production system of MHIs, its dangerous degree is mainly determined by key parameters, and abnormal key parameters often lead to accidents. To predict the real-time risk values of MHIs and improve accident prevention ability of CIP, we need a method that can combine dynamic prediction and assessment. Quantitative risk assessment (QRA) is not capable of modelling risk variations during the operation of a process. Therefore, this paper adopts the data-driven approach. Inspired by visual qualitative analysis and quantitative analysis, a dynamic early warning method is proposed for MHIs. We can get the future trend of these key parameters by using strongly correlation variables to predict key parameters. Fuzzy evaluation analysis is performed on the risk levels of key parameters, and the dynamic evaluation index of these MHIs is obtained. This method can be applied to the dynamic evaluation of MHIs system in CIP. It can contribute to the safety of CIP in some aspects.