Adipocytes express high levels of the HDL scavenger receptor class B type I in a differentiation-dependent manner. We thus have analyzed the routes of HDL cholesterol trafficking at different phases of adipocyte differentiation in the 3T3-L1 cell line. One novel and salient feature of this paper is the observation of a widespread distribution in the cell cytoplasm of Golgi markers, caveolin-2, and a fluorescent cholesterol analog NBD-cholesterol (NBD-chol), observed in the early phases of adipocyte formation, clearly distinct from that observed in mature fat cells (i.e., with fully formed lipid vesicles). Thus, in cells without visible lipid droplets, Golgi markers (Golgi 58K, Golgin 97, transGolgi network 38, Rab 6, and BODIPY-ceramide), caveolin-2, and NBD-chol all colocalize in a widespread distribution in the cell. In contrast, when lipid droplets are fully formed at latter stages, these markers clearly are distributed to distinct cell compartments: a compact juxtanuclear structure for the Golgi markers and caveolin-2, while NDB-chol concentrates in lipid droplets. In addition, disorganization of the Golgi using three different agents (Brefeldin, monensin, and N -ethyl-maleimide) drastically reduces NBD-chol uptake at different phases of adipocyte formation, strongly suggesting that the Golgi apparatus plays a critical role in HDL-mediated NBD uptake and routing to lipid droplets. -Dagher, G., N. Donne, C. Klein, P. Ferré, and I. Dugail. HDL-mediated cholesterol uptake and targeting to lipid droplets in adipocytes. J. Lipid Res. 2003. 44: 1811-1820.