Background Anaemia is an important health-care burden globally, and screening for anaemia is crucial to prevent multi-organ injury, irreversible complications, and life-threatening adverse events. We aimed to establish whether a deep learning algorithm (DLA) that enables non-invasive anaemia screening from electrocardiograms (ECGs) might improve the detection of anaemia.Methods We did a retrospective, multicentre, diagnostic study in which a DLA was developed using ECGs and then internally and externally validated. We used data from two hospitals, Sejong General Hospital (hospital A) and Mediplex Sejong Hospital (hospital B), in South Korea. Data from hospital A was for DLA development and internal validation, and data from hospital B was for external validation. We included individuals who had at least one ECG with a haemoglobin measurement within 1 h of the index ECG and excluded individuals with missing demographic, electrocardiographic, or haemoglobin information. Three types of DLA were developed with 12-lead, 6-lead (limb lead), and single-lead (lead I) ECGs to detect haemoglobin concentrations of 10 g/dL or less. The DLA was built by a convolutional neural network and used 500-Hz raw ECG, age, and sex as input data.