With the application of stainless steel clad plate (SSCP)-enlarging in the marine engineering field, awareness of the consequences of heat treatment on ameliorating microstructure and mechanical properties in stainless steel (SS)/carbon steel (CS) joints is being raised. However, carbide diffusion from a CS substrate to SS cladding may damage the corrosion resistance during inappropriate heating. In this paper, the corrosion behavior of a hot rolling-produced stainless steel clad plate (SSCP) after quenching and tempering (Q-T) treatment, especially crevice corrosion, was studied by electrochemical and morphological methods, such as cyclic potentiodynamic polarization (CPP), confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM). Q-T treatment led to more significance in carbon atoms diffusion and carbide precipitation, which made the passive film of the SS cladding surface on the SSCP unstable. Subsequently, a device for measuring the crevice corrosion performance of SS cladding was designed; the Q-T-treated cladding showed lower re-passivation potential (−585 mV) during CPP when compared to as-rolled (−522 mV), with the maximum corrosion depth ranging from 70.1 μm to 150.2 μm. In addition, the processing of crevice corrosion on SS cladding could be divided into three parts, including the initiation, propagation and development stages, which were driven by the interactions between corrosive media and carbides. The generation and growth mechanism of corrosive pits in crevices were revealed.