Chronic hepatitis B (CHB) is a major global health problem affecting an estimated 350 million people with more than 786000 individuals dying annually due to complications, such as cirrhosis, liver failure and hepatocellular carcinoma (HCC). Liver transplantation (LT) is considered gold standard for treatment of hepatitis B virus (HBV)-related liver failure and HCC. However, post-transplant viral reactivation can be detrimental to allograft function, leading to poor survival. Prophylaxis with high-dose hepatitis B immunoglobulin (HBIG) and anti-viral drugs have achieved remarkable progress in LT by suppressing viral replication and improving long-term survival. The combination of lamivudine (LAM) plus HBIG has been for many years the most widely used. However, life-long HBIG use is both cumbersome and costly, whereas long-term use of LAM results in resistant virus. Recently, in an effort to develop HBIG-free protocols, high potency nucleos(t)ide analogues, such as Entecavir or Tenofovir, have been tried either as monotherapy or in combination with low-dose HBIG with excellent results. Current focus is on novel antiviral targets, especially for covalently closed circular DNA (cccDNA), in an effort to eradicate HBV infection instead of viral suppression. However, there are several other molecular mechanisms through which HBV may reactivate and need equal attention. The purpose of this review is to address post-LT HBV reactivation, its risk factors, underlying molecular mechanisms, and recent advancements and future of anti-viral therapy.