h i g h l i g h t sHydrous and anhydrous ethanol blends show similar regulated and unregulated emissions. Low temperature leads to higher emissions for all tested blends. E85 and E75 blends resulted in higher emissions of acetaldehyde and ethanol. Higher emissions of acetaldehyde and ethanol yield higher OFP. a b s t r a c t Regulated and unregulated emissions from a Euro 5a flex-fuel vehicle tested with nine different hydrous and anhydrous ethanol containing fuel blends at 23 and À7°C over the World harmonized Light-duty vehicle Test Cycle and the New European Driving Cycle, were investigated at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. The experimental results showed no differences on the regulated and unregulated emissions when hydrous ethanol blends were used instead of anhydrous ethanol blends. The use of E85 and E75 blends (gasoline containing 85% and 75% of ethanol, respectively) resulted in a reduction of NO x emissions (30-55%) but increased the emissions of carbon monoxide, methane, carbonyls and ethanol compared to E5, E10 and E15 blends (gasoline containing 5%, 10% and 15% of ethanol, respectively). The increase of the acetaldehyde and ethanol emissions (up to 120% and 350% at 23°C and up to 400% and 390% at À7°C, for acetaldehyde and ethanol, respectively) caused a severe increment of the ozone formation potential. Most of the studied pollutants presented similar emission factors during the tests performed with E10 and E15 blends. The emission factors of most unregulated compounds were lower over the NEDC (with ammonia as an exception) than over the WLTC. However, when taking into consideration only the cold start emissions, emission factors over the WLTC were observed to be higher, or similar, to those obtained over the NEDC. Low ambient temperature caused an increase of the emissions of all studied compounds with all tested blends.