Objective
PD-L1 was an important biomarker in lung adenocarcinoma. The study was to confirm the most important factor affecting the expression of PD-L1 remains undetermined.
Methods
The clinical records of 1045 lung adenocarcinoma patients were retrospectively reviewed. The High-Resolution Computed Tomography (HRCT) scanning images of all the participants were analyzed, and based on the CT characteristics, the adenocarcinomas were categorized according to CT textures. Furthermore, PD-L1 expression and Ki67 index were detected by immunohistochemistry. All patients underwent EGFR mutation detection.
Results
Multivariate logistic regression analysis revealed that smoking (OR: 1.73, 95% CI: 1.04–2.89, p = 0.004), EGFR wild (OR: 1.52, 95% CI: 1.11–2.07, p = 0.009), micropapillary subtypes (OR: 2.05, 95% CI: 1.46–2.89, p < 0.0001), and high expression of Ki67 (OR: 2.02, 95% CI: 1.44–2.82, p < 0.0001) were independent factors which influence PD-L1 expression. In univariate analysis, tumor size > 3 cm and CT textures of pSD showed a correlation with high expression of PD-L1. Further analysis revealed that smoking, micropapillary subtype, and EGFR wild type were also associated with high Ki67 expression. Moreover, high Ki67 expression was observed more frequently in tumors of size > 3 cm than in tumors with ≤ 3 cm size as well as in CT texture of pSD than lesions with GGO components. In addition, multivariate logistic regression analysis revealed that only lesions with micropapillary components correlated with pSD (OR: 3.96, 95% CI: 2.52–5.37, p < 0.0001).
Conclusion
This study revealed that in lung adenocarcinoma high Ki67 expression significantly influenced PD-L1 expression, an important biomarker for immune checkpoint treatment.