Lead exposure is increasingly becoming an important risk factor for osteoporosis. In adults, approximately 80-90 % of absorbed lead is stored in the bones. These bone lead deposits are released into the blood during periods of enhanced bone resorption like menopause, forming a potential endogenous source of lead exposure. Postmenopausal women are at a higher risk for bone lead release because of hormonal and age related changes in bone metabolism. Estrogen deficiency is associated with increase in osteoclasts number and activity leading to both the early and late form of osteoporosis. Hence, high blood lead level coupled with concomitant environmental exposure exposes women in this age group to lead related adverse outcomes like hypertension, reduced kidney and neurocognitive functions as well as increased risk of atherosclerosis and cardiovascular mortality. A few studies have also identified coexisting variates like ethnicity, occupation, residence, education, smoking, alcohol medications, water etc. as significant determinants of bone and blood lead in women, thus increasing the magnitude of postmenopausal bone changes. Hence, interventions focused on reducing the intensity of bone resorption during menopause will help decrease exposure to endogenous lead. This would play a significant role in decreasing the morbidity and mortality associated with menopause. Also, identification of modifiable factors that prevent bone lead release will reduce the risk of chronic lead exposure and improve the health outcomes of post-menopausal women.