The reduction of frictional power losses in power transmitting gears takes a crucial role in the design of energy- and resource-efficient drivetrains. Water-containing lubricants like glycerol and polyalkylene glycols have shown great potential in achieving friction within the superlubricity regime with coefficients of friction lower than 0.01 under elastohydrodynamic lubrication. Additionally, a bio-based production of the base stocks can lead to the development of green lubricants. However, one challenge associated with the application of water-containing lubricants to gearboxes is the evaporation of water and its impact on the lubricant properties. In this study, the influence of water evaporation on elastohydrodynamic friction and film thickness was investigated for three water-containing polyalkylene glycols. Two nominal water contents of 20 wt% and 40 wt% and two viscosities were considered. The results show that the friction increases continuously with higher evaporated water content, while the overall friction level remains low in nearly water-free states. A similar trend is observed for film thickness, where the strong increase in viscosity results in a notable increase in film thickness. Nevertheless, the sensitivity of friction and film thickness to water evaporation is low for small amounts of evaporated water. This allows generous thresholds for permissible variations in water content.