A newly developed medium-carbon carbide-free bainitic steel was fabricated for the first time utilizing the laser powder bed fusion (L-PBF) technique. Process parameters were optimized, and a high density of 99.8% was achieved. The impact of austempering heat treatment on the bainite morphology and transformation kinetics was investigated by high-resolution microstructural analysis (SEM, TEM, and EDS) and dilatometric analysis, and results were compared with conventionally produced counterparts. Faster kinetics and finer microstructures in the L-PBF specimens were found as a consequence of the as-built microstructure, characterized by fine grains and high dislocation density. However, a bimodal distribution of bainitic ferrite plate thickness (average value 60 nm and 200 nm, respectively) was found at prior melt pool boundaries resulting from carbon depletion at such sites.