Poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) is a promising material for organic thermoelectric (TE) applications. However, it is challenging to achieve PEDOT: PSS composites with stretchable, self‐healable, and high TE performance. Furthermore, some existing self‐healing TE materials employ toxic reagents, posing risks to human health and the environment. In this study, a novel intrinsically self‐healable and wearable composite is developed by incorporating environmentally friendly, highly biocompatible, and biodegradable materials of polyvinyl alcohol (PVA) and citric acid (CA) into PEDOT: PSS. This results in the formation of double hydrogen bonding networks among CA, PVA, and PEDOT: PSS, inducing microstructure alignment and leading to simultaneous enhancements in both TE performance and stretchability. The resulting composites exhibit a high electrical conductivity and power factor of 259.3 ± 11.7 S·cm−1, 6.9 ± 0.4 µW·m−1·K−2, along with a tensile strain up to 68%. Furthermore, the composites display impressive self‐healing ability, with 84% recovery in electrical conductivity and an 85% recovery in tensile strain. Additionally, the temperature and strain sensors based on the PEDOT: PSS/PVA/CA are prepared, which exhibit high resolution suitable for human–machine interaction and wearable devices. This work provides a reliable and robust solution for the development of environmentally friendly, self‐healing and wearable TE thermoelectrics.