Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.