A Weyl structure is usually defined by an equivalence class of pairs (g, ω) related by Weyl transformations, which preserve the relation ∇g = ω ⊗ g, where g and ω denote the metric tensor and a 1-form field. An equivalent way of defining such a structure is as an equivalence class of conformally related metrics with a unique affine connection Γω, which is invariant under Weyl transformations. In a standard Weyl structure, this unique connection is assumed to be torsion-free and have vectorial non-metricity. This second view allows us to present two different generalizations of standard Weyl structures. The first one relies on conformal symmetry while allowing for a general non-metricity tensor, and the other comes from extending the symmetry to arbitrary (disformal) transformations of the metric.1 The usual definition of the non-metricity tensor is Q = ∇g.