The circadian transcriptional network is based on a competition between transcriptional activator and repressor complexes regulating the rhythmic expression of clock-controlled genes. We show here that the MYC-associated factor X, MAX, plays a repressive role in this network and operates through a MYC-independent binding to E-box-containing regulatory regions within the promoters of circadian BMAL1 targets. We further show that this “clock” function of MAX is required for maintaining a proper circadian rhythm and that MAX and BMAL1 contribute to two temporally alternating transcriptional complexes on clock-regulated promoters. We also identified MAX network transcriptional repressor, MNT, as a fundamental partner of MAX-mediated circadian regulation. Collectively, our data indicate that MAX regulates clock gene expression and contributes to keeping the balance between positive and negative elements of the molecular clock machinery.