As wild ungulate densities increase across Europe and North America, plant-herbivore interactions are increasingly important from ecological and economic perspectives. These interactions are particularly significant where agriculture and forestry occur and where intensive grazing and browsing by wild ungulates can result in economic losses to growing crops and trees. We studied plant-herbivore interactions in a moose (Alces alces)-dominant system where forestry is a primary economy, the primary and secondary road networks are extensive, and wolves (Canis lupus) are recolonizing. Wolves and humans use low-traffic, secondary roads, yet roadsides provide high-quality and quantity browse for moose. Foraging theory predicts that moose will respond to riskier landscapes by selecting habitats that reduce predation risk, sacrificing feeding time or food quality. As food becomes limiting, however, animals will accept higher predation risk in search of food. We predicted that road avoidance behavior would be strongest within wolf territories. In areas without wolves, moose should select roadsides for their high forage availability. To test these predictions, we measured moose browsing and counted pellet groups as a proxy for habitat use each spring in Norway and Sweden between 2008 and 2018, in areas with and without wolves and at different distances from primary and secondary roads. We used generalized linear mixed models to evaluate drivers of the probability of browsing occurrence and browsing pressure. We found that browsing occurrence increased closer to secondary roads but decreased closer to primary roads. We also found browsing patterns to vary among tree species. For Scots pine (Pinus sylvestris), the browsing occurrence was two times higher in young forests relative to non-young forests and decreased further from secondary roads. Wolf territory presence and probability had neutral or positive effect on browsing occurrence and pressure for all species. However, wolf territory presence had negative effects on browsing occurrence and pressure when interacting with secondary roads, young forest, or snow cover. We showed that roads can influence browsing patterns in Norway and Sweden. However, further research is needed, particularly in the face of continued infrastructure development in Scandinavia.