Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Engineered gene drives have been suggested as a mechanism for rapidly spreading genetic alterations through a population. One promising type of drive is the CRISPR homing drive, which has recently been demonstrated in several organisms. However, such drives face a major obstacle in the form of resistance against the drive that typically evolves rapidly. In addition, homing-type drives are generally self-sustaining, meaning that a drive would likely spread to all individuals of a species even when introduced at low frequency in a single location. Here, we develop a new form of CRISPR gene drive, the Toxin-Antidote Recessive Embryo (TARE) drive, which successfully limits resistance by targeting a recessive lethal gene while providing a recoded sequence to rescue only drive-carrying individuals. Our computational modeling shows that such a drive will have threshold-dependent dynamics, spreading only when introduced above a frequency threshold that depends on the fitness cost of the drive. We demonstrate such a drive in Drosophila with 88-95% transmission to the progeny of female drive heterozygotes. This drive was able to spread through a large cage population in just six generations following introduction at 24% frequency without any apparent evolution of resistance. Our results suggest that TARE drives constitute promising candidates for the development of effective, regionally confined population modification drives.One possible strategy for reducing resistance potential is to remove the need for homologydirected repair altogether. This criterion is fulfilled by drives using the "toxin-antidote" principle.
Engineered gene drives have been suggested as a mechanism for rapidly spreading genetic alterations through a population. One promising type of drive is the CRISPR homing drive, which has recently been demonstrated in several organisms. However, such drives face a major obstacle in the form of resistance against the drive that typically evolves rapidly. In addition, homing-type drives are generally self-sustaining, meaning that a drive would likely spread to all individuals of a species even when introduced at low frequency in a single location. Here, we develop a new form of CRISPR gene drive, the Toxin-Antidote Recessive Embryo (TARE) drive, which successfully limits resistance by targeting a recessive lethal gene while providing a recoded sequence to rescue only drive-carrying individuals. Our computational modeling shows that such a drive will have threshold-dependent dynamics, spreading only when introduced above a frequency threshold that depends on the fitness cost of the drive. We demonstrate such a drive in Drosophila with 88-95% transmission to the progeny of female drive heterozygotes. This drive was able to spread through a large cage population in just six generations following introduction at 24% frequency without any apparent evolution of resistance. Our results suggest that TARE drives constitute promising candidates for the development of effective, regionally confined population modification drives.One possible strategy for reducing resistance potential is to remove the need for homologydirected repair altogether. This criterion is fulfilled by drives using the "toxin-antidote" principle.
Gene drives can potentially fixate in a population by biasing inheritance in their favor, opening up a variety of potential applications in areas such as disease-vector control and conservation. CRISPR homing gene drives have shown much promise for providing an effective drive mechanism, but they typically suffer from the rapid formation of resistance alleles. Even if the problem of resistance can be overcome, the utility of such drives would still be limited by their tendency to spread into all areas of a population. To provide additional options for gene drive applications that are substantially less prone to the formation of resistance alleles and could potentially remain confined to a target area, we developed several designs for CRISPR-based gene drives utilizing toxin-antidote (TA) principles. These drives target and disrupt an essential gene with the drive providing rescue. Here, we assess the performance of several types of TA gene drive systems using modeling and individual-based simulations. We show that Toxin-Antidote Recessive Embryo (TARE) drive should allow for the design of robust, regionally confined, population modification strategies with high flexibility in choosing drive promoters and recessive lethal targets. Toxin-Antidote Dominant Embryo (TADE) drive requires a haplolethal target gene and a germline-restricted promoter but should enable the design of both faster regional population modification drives and even regionally-confined population suppression drives. Toxin-antidote dominant sperm (TADS) drive can be used for population modification or suppression. It spreads nearly as quickly as a homing drive and can flexibly use a variety of promoters, but unlike the other TA systems, it is not regionally confined and requires highly specific target genes. Overall, our results suggest that CRISPR-based TA gene drives provide promising candidates for further development in a variety of organisms and may allow for flexible ecological engineering strategies. METHODSDeterministic model. To analyze the dynamics of TA systems, we developed a deterministic, discrete-generation modeling approach. These models were used to demonstrate frequency trajectories and to calculate parameters such as introduction thresholds. Initially, drive/wild-type heterozygotes are added to a population of wild-type individuals at a specified introduction frequency. In each generation, frequencies were tracked for each genotype. Females select a mate randomly, with each male's chance of being selected being proportional to his fitness value. Females then generate a number of potential offspring equal to twice their fitness value.
Engineered gene drives are being explored as a potential strategy for the control of vector-borne diseases due to their ability to rapidly spread genetic modifications through a population. While an effective CRISPR homing gene drive for population suppression has recently been demonstrated in mosquitoes, formation of resistance alleles that prevent Cas9 cleavage remains the major obstacle for drive strategies aiming at population modification, rather than elimination. Here, we present a homing drive in Drosophila melanogaster that reduces resistance allele formation below detectable levels by targeting a haplolethal gene with two gRNAs while also providing a rescue allele. This is because any resistance alleles that form by end-joining repair will typically disrupt the haplolethal target gene, rendering the individuals carrying them nonviable. We demonstrate that our drive is highly efficient, with 91% of the progeny of drive heterozygotes inheriting the drive allele and with no resistance alleles observed in the remainder. In a large cage experiment, the drive allele successfully spread to all individuals. These results show that a haplolethal homing drive can be a highly effective tool for population modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.