Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Given the reported effects of nuclear paraspeckle assembly transcript 1 (NEAT1) on kidney injury, a study is worth formulating to investigate whether and how NEAT1 impacts podocytes. Materials and methods A mouse podocyte injury model was established using the adriamycin (ADR)-induced mouse podocyte cell line (MPC5). The target relationships between NEAT1 and microRNA (miR)-23b-3p and between miR-23b-3p and Bcl-2 interacting protein 3 like (BNIP3L) were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. After ADR-induced MPC5 cells were transfected with NEAT1 overexpression plasmid (oe-NEAT1) or shNEAT1, the viability and apoptosis of MPC5 cells were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The expressions of MPC5, miR-23b-3p, BNIP3L and the factors related to podocyte injury, apoptosis and epithelial-mesenchymal transition were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Results NEAT1 was high-expressed in ADR-induced cell model. After transfection with oe-NEAT1, the expression of NEAT1, the levels of marker (Desmin) and apoptosis were promoted, while the viability and the levels of podocyte injury markers (WT1, Nephrin) were inhibited in ADR-induced cells. However, shNEAT1 generated the effects opposite to oe-NEAT1. Besides, miR-23b-3p competitively bound to NEAT1 and targeted BNIP3L. MiR-23b-3p inhibitor reversed the effect of shNEAT1, while its effect could be further offset by shBNIP3L. Furthermore, miR-23b-3p inhibitor affected mouse podocyte injury through downregulating Bcl-2 and E-cadherin levels and upregulating Cleaved-caspase-3, Bax, N-cadherin, Vimentin and Snail levels, but shBNIP3L did oppositely. Conclusion NEAT1 promotes the podocyte injury via targeting miR-23b-3p/BNIP3L axis.
Background Given the reported effects of nuclear paraspeckle assembly transcript 1 (NEAT1) on kidney injury, a study is worth formulating to investigate whether and how NEAT1 impacts podocytes. Materials and methods A mouse podocyte injury model was established using the adriamycin (ADR)-induced mouse podocyte cell line (MPC5). The target relationships between NEAT1 and microRNA (miR)-23b-3p and between miR-23b-3p and Bcl-2 interacting protein 3 like (BNIP3L) were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. After ADR-induced MPC5 cells were transfected with NEAT1 overexpression plasmid (oe-NEAT1) or shNEAT1, the viability and apoptosis of MPC5 cells were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The expressions of MPC5, miR-23b-3p, BNIP3L and the factors related to podocyte injury, apoptosis and epithelial-mesenchymal transition were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Results NEAT1 was high-expressed in ADR-induced cell model. After transfection with oe-NEAT1, the expression of NEAT1, the levels of marker (Desmin) and apoptosis were promoted, while the viability and the levels of podocyte injury markers (WT1, Nephrin) were inhibited in ADR-induced cells. However, shNEAT1 generated the effects opposite to oe-NEAT1. Besides, miR-23b-3p competitively bound to NEAT1 and targeted BNIP3L. MiR-23b-3p inhibitor reversed the effect of shNEAT1, while its effect could be further offset by shBNIP3L. Furthermore, miR-23b-3p inhibitor affected mouse podocyte injury through downregulating Bcl-2 and E-cadherin levels and upregulating Cleaved-caspase-3, Bax, N-cadherin, Vimentin and Snail levels, but shBNIP3L did oppositely. Conclusion NEAT1 promotes the podocyte injury via targeting miR-23b-3p/BNIP3L axis.
Wenyang Lishui decoction (WYD) has been frequently used to treat patients with membranous nephropathy (MN) in China. Our previous study in vitro showed that WYD aqueous extract could alleviate F-actin reorganization of podocytes induced by serum from idiopathic membranous nephropathy (IMN) patients. This study aims to investigate the effects and molecular mechanisms of WYD on MN. MN rat models were induced by cationic bovine serum albumin. Experimental rats were divided into four groups: normal, model, WYD, and benazepril. The normal group consisted of normal rats receiving distilled water for four weeks, while the model, WYD, and benazepril groups consisted of MN rats receiving distilled water, 16.5 g/kg/day WYD aqueous extract, and 10 mg/kg/day benazepril, respectively. Alanine aminotransferase, kidney function, albumin, and 24 h urine total protein (UTP) were measured. Hematoxylin-eosin and electron microscopy analyses were performed. Mouse podocytes were induced to develop cell models by serum from IMN patients with antibody to the M-type phospholipase A2 receptor and spleen and kidney Yang deficiency syndrome. They were divided into five groups: control, model, 2 mg/ml WYD, 4 mg/ml WYD, and 8 mg/ml WYD. CCK-8 assays, flow cytometry, qRT-PCR, and Western blot analyses were performed. In the animal experiment, side effects of WYD were not found. Also, there was no significant difference in kidney function among the groups. In addition, UTP level was significantly reduced, and kidney histological damage was restored in both WYD and benazepril groups but difference in UTP level between them was not found. In the cell experiment, apoptosis rate was increased in the model group while it was decreased by coincubation with WYD. Besides, mRNA and protein levels of p53 were decreased, and those of Bcl-2 were increased by treatment using WYD. In conclusion, WYD could reduce proteinuria and ameliorate podocyte injury by regulating the expression of p53 and Bcl-2. The study is registered in the Chinese Clinical Trial Registry (ChiCTR-OCH-14005137).
Background: The molecular mechanism of Astragali Radix in the treatment of children with nephrotic syndrome (NS) is unclear. This study aimed to use network pharmacology to explore this potential mechanism.Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to identify the main active ingredients of Astragali Radix. The PharmMapper, Online Mendelian Inheritance in Man (OMIM), and GeneCards databases were then used to identify the active ingredients of Astragali Radix.The String database and Cytoscape software were used to construct the protein-protein network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using DAVID Database.Results: In the TCMSP Database, a total of 20 chemical constituents of Astragali Radix were screened.After removing the duplicates and false positive genes, 394 targets of these active ingredients were obtained from PharmMapper. By comparing the NS-related genes in the GeneCards and OMIM Databases, a total of 39 potential NS-related targets were ultimately identified. The protein-protein-interaction network included 39 nodes and 366 edges. The top 5 proteins were albumin (ALB), serine/threonine kinase (AKT1), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), and matrix metallopeptidase 9 (MMP9). The GO analysis showed that the target genes were mainly involved in biological processes (e.g., signal transduction, the positive regulation of cell proliferation, and the positive regulation of migration).The cellular components included a plasma membrane, extracellular exosome, and extracellular space. The molecular functions included protein binding, zinc-ion binding, protein tyrosine kinase activity, and enzyme binding. The KEGG analysis showed that the treatment of NS by Astragali Radix mainly involved pathways in cancer, proteoglycans in cancer, the phosphatidylinositol 3-kinase and protein kinase B (PI3K-Akt) signaling pathway, the rennin-angiotensin-system (Ras) signaling pathways, and Forkhead box protein O1 (FoxO) signaling pathways.Conclusions: In the present study, the network pharmacology method was used to explore the potential targets and pathways of Astragali Radix in the treatment of NS. We also provided future research directions for the treatment of NS with a complex pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.