Artificial intelligence (AI) is poised to revolutionize how science, and biomedical research in particular, are done. With AI, problem solving and complex tasks using massive data sets can be performed at a much higher rate and dimensionality level compared to humans. With the ability to handle huge data sets and self-learn, AI is already being exploited in drug design, drug repurposing, toxicology, and material identification. AI could also be used in both basic and clinical research in study design, defining outcomes, analyzing data, interpreting findings, and even identifying the most appropriate areas of investigation and funding sources. State-of-the-art AI-based large language models (LLM), such as ChatGPT and Perplexity, are positioned to change forever how science is communicated and how scientists interact with one another and their profession, including post-publication appraisal and critique. Like all revolutions, upheaval will follow and not all outcomes can be predicted, necessitating guardrails at the onset, especially to minimize the untoward impact of the many drawbacks of LLMs, which include lack of confidentiality, risk of hallucinations, and propagation of mainstream albeit potentially mistaken opinions and perspectives. In this review, we highlight areas of biomedical research that are already being reshaped by AI and how AI is likely to impact it further in the near future. We discuss the potential benefits of AI in biomedical research and address possible risks, some surrounding the creative process, that warrant further reflection.