This paper presents a quasi-static technique to evaluate the structural deformation of the four stacked B-25 boxes subjected to the static loads of overlaying soil and to determine the effect of corrosion on the deformation. Although the boxes are subjected to a static load, the structural responses of the boxes vary with time. The analytical results indeed show that the deflection, buckling and post buckling of the components of the stacked boxes occur in sequence rather than simultaneously. Therefore, it is more appropriate to treat the problems considered as quasistatic rather than static; namely, the structural response of the stacked boxes are dynamic but with very long duration. Furthermore, the finite-element model has complex contact and slide conditions between the interfaces of the adjoining components, and thus its numerical solution is more tractable by using explicit time integration schemes.The analysis covers the three corrosion scenarios following various time lengths of initial burial under an interim soil cover. The results qualitatively agree with expected differences in deformation for different degrees of corrosion subsidence potential reduction that can be achieved.