In this work, the wetting behaviors of lead-bismuth eutectic (LBE) on corroded 316L, T91, and CLAM surfaces were studied. The wettability of LBE on virgin and corroded surfaces were tested at 450 °C by using the sessile-drop (SD) method after immersing the samples in LBE with saturated oxygen concentration for 400, 800, and 1200 h at 450°C. Additionally, the morphology, as well as element distribution of the corrosion structure, were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that the virgin samples of three materials are non-wetting to LBE, and the formation of corrosion structures further reduces the wettability. Besides, the thickness of the corrosion layer formed on the 316L surface grew more slowly than the other two steel, which results in better corrosion resistance of austenitic steel 316L than that of ferritic/martensitic steels T91 and CLAM at 450 °C. Meanwhile, the morphology and distribution of corrosion products are important factors affecting the wettability of the steel surface. The formation of corrosion products with high roughness as well as disorder results in a significant reduction in surface wettability.