Visible light communication (VLC) is becoming more relevant due to the accelerated advancement of optical fibers. Polymer optical fiber (POF) technology appears to be a solution to the growing demand for improved transmission efficiency and high-speed data rates in the visible light range. However, the VLC system requires efficient splitters with low power losses to expand the optical energy capability and boost system performance. To solve this issue, we propose an effective 1 × 8 optical splitter based on multicore polycarbonate (PC) POF technology suitable for functioning in the green-light spectrum at a 530 nm wavelength. The new design is based on replacing 23 air-hole layers with PC layers over the fiber length, while each PC layer length is suitable for the light coupling of the operating wavelength, which allows us to set the right size of each PC layer between the closer PC cores. To achieve the best result, the key geometrical parameters were optimized through RSoft Photonics CAD suite software that utilized the beam propagation method (BPM) and analysis using MATLAB script codes for finding the tolerance ranges that can support device fabrication. The results show that after a light propagation of 2 mm, an equally green light at a 530 nm wavelength is divided into eight channels with very low power losses of 0.18 dB. Additionally, the splitter demonstrates a large bandwidth of 25 nm and stability with a tolerance range of ±8 nm around the operated wavelength, ensuring robust performance even under laser drift conditions. Furthermore, the splitter can function with 80% and above of the input signal power around the operated wavelength, indicating high efficiency. Therefore, the proposed device has a great potential to boost sensing detection applications, such as Raman spectroscopic and bioengineering applications, using the green light.