The corrosion phenomenon is as old as the age of the planet. The cost of corrosion has risen alarmingly with industrial progress and it is estimated to be around 300 billion dollars or 3 to 4.5% of the GNP of developed nations. Thousands of alloys have been developed to control corrosion, which is a major consideration in the development of new ferrous and non-ferrous alloys. Several corrosion control techniques such as inhibitor treatment, coatings, cathodic protection, alloying additions, and designing for corrosion protection have been developed to combat corrosion. Despite their merits, techniques such as inhibition treatment and coatings are limited by their adverse effect on the environment because of their volatile organic components. Due to an increasingly alarming carbon footprint, there is a growing global concern to keep the environment clean. Hence, a great need exists to replace the current control methods by ecofriendly methods. The potential of the green technology of hydrophobicity has therefore been exploited to control corrosion by fabricating hydrophobic surfaces on alloys and these surfaces have shown highly promising results. This technology offers a novel method to control corrosion of metals, alloys, polymers and composites.