Metal deterioration via corrosion is a ubiquitous and persistent problem. Ångstrom-scale, atomically thin 2D materials are promising candidates for effective, robust, and economical corrosion passivation coatings due to their ultimate thinness and excellent mechanical and electrical properties. This review focuses on elucidating the mechanism of 2D materials in corrosion mitigation and passivation related to their physicochemical properties and variations, such as defects, out-of-plane deformations, interfacial states, temporal and thickness variations, etc. In addition, this review discusses recent progress and developments of 2D material coatings for corrosion mitigation and passivation as well as the significant challenges to overcome in the future.