Background
Varied surface coatings have been studied time and again in medical sciences. Whether general or dental, studying the performance of coatings aims to assess their potential to improve the durability and longevity of titanium implants, thereby advancing implant technology for enhanced patient outcomes. Various analytical techniques are utilized to assess the performance of the coating, providing insights into its effectiveness in preventing corrosion. The findings of this evaluation will contribute to our understanding of corrosion mitigation strategies for titanium implants and pave the way for the development of more durable implant materials. This article aims to evaluate the corrosion resistance of an innovative metal compound coating applied over titanium implants.
Materials and methods
In this study, a total of 20 medical-grade, commercially pure titanium screws were collected. The dimensions of the titanium screws were 2mm x 7mm. Around 10 of these commercially pure titanium screw samples were used as the control group. Hafnium nitride (HfN) (0.1 M) was mixed with 100% ethanol and stirred using a glass rod for about 48 hours. Then 10 of the implant screw samples were immersed in the prepared sol and sintered at 400
o
C for two hours. The HfN-coated samples were then used as the test group. The corrosion resistance of both groups was tested using electrochemical impedance spectroscopy and potentiodynamic polarization studies. The Nyquist, Bode impedance, and Bode phase angle plots were obtained and studied.
Results
Using the Stern-Geary equation, the corrosion current density was calculated. On analysis, these values indicated that the higher impedance in HfN-coated titanium screws showed higher mean corrosion potential (E
corr
= -0.452 V) and corrosion current density ( i
corr
= 0.0354 μA/cm
2
) than the uncoated titanium screws.
Conclusion
It was concluded that the corrosion properties of HfN-coated titanium screws had higher impedance and consequently the highest corrosion resistance. This thereby provides a promising scope for further research of this novel metal coating for use in the biomedical sectors, specifically for dental implants.