Graphene oxide (EGO) was prepared via an electrochemical exfoliation method and modified with dopamine and tannic acid, and it was then incorporated into epoxy resins to enhance their barrier, self-healing and anticorrosion performances. The morphologies, structures and compositions of the HGO (GO prepared via Hummers’ method), EGO and MGO (modified EGO) were characterized via SEM, TEM, AFM, Raman spectroscopy and XPS. The protective performances of the epoxy varnish coatings, EGO/epoxy coatings and MGO/epoxy coatings with different contents of MGO were evaluated via EIS measurements, and the role played by MGO on the coating defects was determined via LEIS and salt spray tests on the scratched coatings in a 3.5% NaCl solution. The results show that the dopamine and tannic were successfully grafted onto the EGO surface via π–π interactions and chemical bonding, and that the dispersibility of the MGO in the epoxy resins was facilitated. The epoxy coatings with a 0.1% addition of MGO possessed the best anticorrosion properties (|Z|0.01Hz > 1010 Ω cm2 after 70 days immersion in 3.5% NaCl solution) in comparison to the other coatings due to the “labyrinth effect” formed by the uniformly dispersed MGO. Meanwhile, the grafted tannic acid was released at the coating defects and provided inhibition functionalities for the substrate. As a result, the corrosion of the carbon steel was significantly decreased. This work provides a new perspective on the efficient modification of electrochemically exfoliated GO epoxy coatings for metals by combining the advantages of dopamine and corrosion inhibitors.