Metal-air batteries are becoming of particular interest, from both fundamental and industrial viewpoints, for their high specific energy density compared to other energy storage devices, in particular the Li-ion systems. Among metal-air batteries, the zinc-air option represents a safe, environmentally friendly and potentially cheap and simple way to store and deliver electrical energy for both portable and stationary devices as well as for electric vehicles. Zinc-air batteries can be classified into primary (including also the mechanically rechargeable), electrically rechargeable (secondary), and fuel cells. Research on primary zinc-air batteries is well consolidated since many years. On the contrary, research on the electrically rechargeable ones still requires further efforts to overcome materials science and electrochemical issues related to charge and discharge processes. In addition, zinc-air fuel cells are also of great potential interest for smart grid energy storage and production. This review aims to report on the latest progresses and state-of-the-art of primary, secondary and mechanically rechargeable zinc-air batteries, and zinc-air fuel cells. In particular, this review focuses on the critical aspects of materials science, engineering, electrochemistry and mathematical modeling related to all zinc-air systems.