Percutaneous osseointegrated (OI) devices have an endoprosthesis attached to the residual bone of an amputated limb, then pass permanently through the skin to be connected to the distal prosthetic componentry outside of the body. Whether the bone-anchoring region of current OI endoprostheses are cylindrical, and/or conical, they require intimate bone-endoprosthesis contact to promote stabilizing bone attachment. However, removing too much cortical bone to achieve more contact leads to thinner and, subsequently, weaker cortical walls. Endoprostheses need to be designed to balance these factors, namely maximizing the contact, while minimizing the volume of bone removed. In this study, 27 human tibias were used to develop and validate a virtual implantation method. Then, 40 additional tibias were virtually implanted with mock cylindrical and conical bone-anchoring regions at seven residual limb lengths to measure resultant bone-endoprosthesis contact and bone removal. The ratio of bone-endoprosthesis contact to bone volume removed showed the conical geometry had more contact area per volume bone removed for all amputation levels (p≤0.001). In both mock devices, cortical penetration of the endoprosthesis at 20% residual length occurred in 74% of cases evaluated, indicating that alternative endoprosthesis geometries may be needed for clinical success in that region of bone.