Background: Nonanatomic placement of anterior cruciate ligament (ACL) grafts is a leading cause of ACL graft failure. Three-dimensional (3D) magnetic resonance imaging (MRI) femoral footprint localization could enhance planning for an ACL graft's position. Purpose: To determine the intra- and interobserver reliability of measurements of the ACL femoral footprint position and size obtained from 3D MRI scans. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 41 patients with complete ACL tears were recruited between November 2014 and May 2016. Preoperatively, a coronal-oblique proton-density fast spin echo 3D acquisition of the contralateral uninjured knee was obtained along the plane of the ACL using a 1.5T MRI scanner. ACL footprint parameters were obtained independently by 2 musculoskeletal radiologists (observers A and B). The distal and anterior positions of the center of the footprint were measured relative to the apex of the deep cartilage at the posteromedial aspect of the lateral femoral condyle, and the surface area of the ACL femoral footprint was approximated from multiplanar reformatted images. After 1 month, the measurements were repeated. Intraclass correlation coefficients (ICCs) were calculated to assess for intra- and interobserver reliability. Bland-Altman plots were produced to screen for potential systematic bias in measurement and to calculate limits of agreement. Results: The ICCs for intraobserver reliability of the ACL femoral distal and anterior footprint coordinates were 0.75 and 0.78, respectively, for observer A. For observer B, they were 0.75 and 0.74, respectively. The ICCs for interobserver reliability were 0.75 and 0.85 for the distal and anterior coordinates, respectively. Bland-Altman plots demonstrated no significant systematic bias. For surface area measurements, the intraobserver ICCs were 0.37 and 0.62 for observers A and B, respectively. The interobserver reliability was 0.60. Observer B consistently measured the footprints as slightly larger versus observer A (1.19 ± 0.27 vs 1 ± 0.22 cm2, respectively; P < .001). Conclusion: Locating the center of the anatomic footprint of the ACL with 3D MRI showed substantial intra- and interobserver agreement. Interobserver agreement for the femoral footprint surface area was fair to moderate.