Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feedforward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that-in this highly columnar cortex-task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.A uditory perception starts in our ears, where hair cells at different places in the cochlea respond to different sound frequencies. The spatially ordered arrangement of neural responses to frequencies (tonotopy) that arises from this transduction mechanism is preserved in subcortical (1, 2) and cortical stages of processing, where neuronal populations form multiple tonotopic maps (3, 4). At the cortical level, tonotopic maps describe systematic changes along the surface. In the orthogonal direction (i.e., perpendicular to the cortical surface), aggregates of neurons with parallel axons have been reported (5, 6). These anatomical observations of cortical microcolumns inspired invasive electrophysiological investigations in cats (7), demonstrating that frequency preference is constant across cortical depth (i.e., frequency columns). Since this early study, frequency columns have been observed in a variety of animals (3,(8)(9)(10), and a columnar organization has been suggested for other acoustic properties (10, 11). Despite this anatomical and physiological evidence from animal models, the role of cortical columns in auditory perception is not understood (6, 12, 13). To unravel intracolumnar computations, it is of fundamental importance to analyze the transformation of information across cortical depths. Differences in cell types and in patterns of input and output projections suggest a distinct role of cortical layers in neural information processing (5). In particular, behavioral demands and ongoing brain states can modulate the functional properties of layer 2/3 neurons, suggesting that supragranular neuronal populations may be of fundamental relevance for the processing of sensory information in a context-dependent manner (14). Recordings in the primary auditory cortex of animals have shown differences across layers in response latency (15, 16), in frequency selectivity (i.e., tuning width) (8, 16), and in the complexity of neuronal preference to acoustic information (i.e., recepti...