Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking is a cause or a consequence of dyslexia and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with best and worse reading performance. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Among children with dyslexia, phrasal CTS tended to lateralize to the left hemisphere in severe dyslexia and lateralized to the right hemisphere in children with mild dyslexia and in all control groups. Finally, phrasal CTS was lower in children with dyslexia compared with age-matched controls, but only in informational noise conditions. No such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls suggests that such alterations are a consequence of reduced reading experience rather than a cause of dyslexia.