Stressors elicit a complex but variable suite of endocrine events. Comparative studies of the stress response have focused primarily on the adrenocortical response to stress, in particular the measurement of plasma levels of glucocorticoids. However, a number of other factors contribute to and modify cellular and organismal responses to glucocorticoids. Notably, plasma corticosteroid binding globulins (CBGs) can regulate the general availability of steroid to tissues, and/or direct the delivery of hormones to specific sites. In this paper, we discuss possible functions of CBG and mechanisms of CBG action, review CBG characteristics among vertebrates, and discuss our recent studies indicating that CBG may indeed modulate responses to stressors. For example, in house sparrows, we found that basal and stress-induced concentrations of total corticosteroid (cortisol or corticosterone) (CORT) vary seasonally, but CBG concentrations change proportionally, so that free CORT concentrations appear static yearround. In contrast, in white-crowned sparrows and tree lizards, CBG concentrations change under conditions when total CORT levels do not, resulting in significant changes in circulating free CORT. These differences in free CORT are masked if CBG is not accounted for. We have also found that the binding properties of CBG vary considerably between species and need to be determined empirically. Such studies led to the observation that CBG in several species may also serve as a functional androgen binding protein; this is especially important for birds, because previous studies had concluded that birds lack androgen binding globulins. We propose that consideration of CBG is paramount to understanding the role of glucocorticoids in mediating behavioral and physiological responses to stress.