Landslide monitoring is a global challenge that can take strong advantage from opportunities offered by Earth Observation (EO). The increasing availability of constellations of small satellites (e.g., CubeSats) is allowing the collection of satellite images at an incredible revisit time (daily) and good spatial resolution. Furthermore, this trend is expected to grow rapidly in the next few years. In order to explore the potential of using a long stack of images for improving the measurement of ground displacement, we developed a new procedure called STMDA (Slide Time Master Digital image correlation Analyses) that we applied to one year long stack of PlanetScope images for back analyzing the displacement pattern of the Rattlesnake Hills landslide occurred between the 2017 and 2018 in the Washington State (USA). Displacement maps and time-series of displacement of different portions of the landslide was derived, measuring velocity up to 0.5 m/week, i.e., very similar to velocities available in literature. Furthermore, STMDA showed also a good potential in denoising the time-series of displacement at the whole scale with respect to the application of standard DIC methods, thus providing displacement precision up to 0.01 pixels.The most common optical satellite missions (e.g., QuickBird, SPOT, LANDSAT, Sentinel-2, WorldView, Pléiades, just to mention few of them) are characterized by spatial resolution ranging between 0.3 and 30 m and a revisit time of some days [25][26][27], therefore, they are not fully adequate to detect landslides at a spatial and temporal scale suitable for continuous monitoring. However, as stated in [4,28], the fusion of images collected by different optical satellite sensors has certainly increased the opportunities for cloud-free surface investigation, thus allowing also a general improvement of the temporal resolution.In the last few years, EO has been affected by an astonishing sensor and platform development and improvement, thanks to small satellites. According to [27,29,30], among the main features of these satellites, properly named CubeSats, there are: (i) the general small size and weight (a single-unit of CubeSat normally measures 10 × 10 × 11 cm and typically weights less than 1.5 kg), (ii) high geometric resolution (~3-5 m/pixel) and (iii) daily/near-daily revisit time. CubeSats represent a cost-effective EO strategy, allowing unique chances for a wide variety of application fields [8,31].Planet Labs Inc. has recently made available a large constellation (> 130 units) of optical 3-U CubeSats (10 × 10 × 30 cm), also called PlanetScope or, more commonly, "Doves" [27,30,[32][33][34]. With an average orbit height of about 475 km a.s.l., the main CCD array sensor is able to collect images of 7000 × 2000 pixels, with a footprint of approximately 24 × 8 km 2 . Each Doves collects one image/second along his orbit with a slight overlapping between consecutive scenes. In this way, taking advantage of the whole constellation, images at a daily sampling rate are achievable, thus allowing to ...